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The computational challenge of automating outlier, or blunder point, detection in 
radio metric data requires the use of nonstandard statistical methods because the outliers 
have a deleterious effect upon standard least squares methods. The particular nonstandard 
methods most applicable to the task are the robust statistical techniques that have under- 
gone intense development since the 1960s. These new methods are by des@ more resis- 
tant to the effects of outliers than standard methods. Because the topic may be unfamil- 
iar, a brief introduction to the philosophy and methods of robust statistics is presented. 
Then the application of these methods to the automated outlier detection problem is 
detailed for some specific examples encountered in practice, 
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1. Introduction: A Specific Problem and 
a Solution Strategy 
Radio metric data must routinely be screened for spu- 

rious values which may result, for example, from a temporary 
malfunction in the instruments gathering the data or from a 
human blunder in the data collection process. These spurious 
values typically reveal themselves as outliers, or points which 
lie outside the normal range of the good data. An efficient way 
for a data analyst t o  detect these outliers is to  view a computer- 
generated plot of the radio metric data (or, as in actual prac- 
tice, a transformed version of them) against their respective 
time coordinates. The outliers show up in the plot as unusu- 
ally large deviations from a mean curve followed by the good 
data. After examining such a plot, the data analyst can delete 
the outliers from the data set. While this mode of operation 
for outlier detection has been an acceptable method in the 
past, it is realized that the expected large increase in the 

amount of radio metric data t o  be processed will require 
excessive amounts of manpower unless steps are taken to auto- 
mate some portion of the process. The consequent mathemati- 
cal challenge is that of developing computational algorithms 
which can perform the job of outlier detection for radio 
metric data. 

Since radio metric data are directly derived from physical 
quantities such as velocity and range, the mean curve traced 
by  a plot of  the good data should be smooth and continuous 
(in the absence of  abrupt dynamic changes); thus, function 
fitting techniques seem t o  constitute a natural mathematical 
tool t o  use for initial analytical estimation of  the mean curve. 
Then, assuming that the good data fall within a distinct nom- 
inal noise band about the mean curve, one can use the ana- 
lytic function estimate to  characterize the outliers as those 
data which lie outside the band. The special difficulty of  this 
function fitting problem is that the very presence of the out- 
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liers foils classical function fitting attempts. Indeed, the very 
reason that outliers need to  be removed is that least squares 
estimation algorithms can be adversely affected by them. 
More specifically, a function fit by least squares to  outlier- 
contaminated data may not follow the good data well. A 
common consequence is that the good data deviate as much 
from the function estimate as the outliers do.  To salvage this 
strategy based on function estimation. it is necessary to  
employ methods which are robust against the presence of  out- 
liers. Fortunately, outlier-robust methods have been a major 
area of  research and development in the statistical community 
since the 1960s. A major goal of this article is t o  provide the 
reader with a brief introduction to  these modern statistical 
methods by way of application to the specific problem 
described. 

A summary of the rest of this article is now given. Sec- 
tion I1 provides an introduction to  some of the philosophy 
and methods of robust statistics. Sources of  information for 
this section include the seminal article by Huber [ l ]  and his 
follow-up textbook [ 2 ] .  Two less theoretical treatments of 
this topic are given in [3] and [4].  Section I11 details the 
application of these methods to the outlier detection problem. 
The description is devoted more to  providing the rationale 
behind automating outlier detection than to  specifying fine 
algorithmic details. The methods are applied to  two sets of 
radio metric data from the International Cometary Explorer 
(ICE) spacecraft. Section 111 also outlines the application of 
two additional statistical tests which can be found in more 
standard texts such as [5].  

II. Robust Statistical Methods 
The operative mode for much of classical statistics is to 

assume an appropriate probability model and then to  employ 
the optimal procedure for the model. For the purposes of this 
discussion. the efficiency of a procedure is measured by its 
theoretical variance. In contrast to classical procedures. 
robust statistical methods by design rely less heavily upon an 
appropriate choice of the probability model. Considerations 
of robustness lead t o  the development of methods which 
compromise the requirement of optimal efficiency for the 
ability to  accommodate a range of deviations from a specific 
assumed model with reasonable, rather than optimal, effi- 
ciency. For example, a very common model is the Gaussian 
density denoted by @ ( * ; p , u ) .  A class of deviations from this 
model is given by the mixture densities (1 - E) @ (.; p , u )  + 
~@(*;p,Ncr) ,where N is a large number and E ranges from 0 for 
no deviation t o  1/2 for large deviations. These particular 
mixture densities with E between 0.01 and 0.1 often provide 
a more realistic model of real data which tend to  be contami- 
nated with outliers. The main fault of classical procedures 
is that they perform optimally for their intended case E = 0 

but often lose efficiency quite drastically as E increases. 
Robust alternatives remedy this fault by insuring against 
unacceptably poor performance while not necessarily pro- 
viding optimal efficiency for any one case. 

A. Robust Location and Scale Estimation 

The problems of locating the center of a distribution and 
of determining its scale are the simplest cases for illustration 
of these concepts. As a specific example, suppose a set of data 
 xi}^,, is assumed t o  come from a Gaussian distribution for 
which the mean and variance are to  be estimated. The classi- 
cal location estimator is the minimizer of the least squares 
error criterion p2(o = C(xi  - 02. This estimator is. of course. 
the sample mean denoted by T,. The classical estimate of scale 
is derived by taking the square root of the sample variance, 

Suppose that the particular data set has X, = 0 and 
s i  = 1 .  and consider the effect of an additional datum on 
these estimates. Then the sample mean T,+,= ~ , + ~ / ( n  t 1) 
while the sample variance / ( n  + 1). 
These equations show that a single outlier x , + ]  can cause the 
estimates t o  be arbitrarily large. This is one sense in which 
the classical estimators of location and scale are not robust 
against the presence of outliers. 

= [ ( n  - l ) /n]  t 

The extreme sensitivity of the sample mean to  outliers can 
be traced t o  the error criterion from which it is derived. In 
an effort to balance the total squared error, the sample mean is 
forced t o  overcompensate for the one outlier. Consider now 
changing the form of the error criterion t o  p I ( T )  = 21xi - TI. 
This criterion is minimized bv the median M ,  = median ( x i ) .  
It is easy to verify that one outlier. or even a small percentage 
of outliers, has a limited effect upon the location estimate 
based upon minimizing p l .  Thus. the median offers some 
robustness against outliers and consequently is receiving re- 
newed attention as a location estimator. Similarly, a preferred 
robust estimate of scale is the Median Absolute Deviation from 
the sample median, MAD, = median { ( x i  - M n l } .  For a Gaus- 
sian data set, Els , ]  x u ,  but E[MAD,] =Z (2/3)u. Thus. a fac- 
tor of 3/2 is required t o  make the MAD, directly comparable 
with s, as an estimator. 

B. Robust Linear Regression 

In brief review, linear regression analysis is concerned with 
equations of the form y = X/3 t E, where X is a matrix of known 
quantities, y is also a known vector often called the vector of 
observations, 0 is a vector of unknown parameters to  be esti- 
mated, and E is a vector of random errors with covariance 

E W-I . For example, least squares function fitting is 
one of the problems which may be formulated in the linear 
regression framework. Classical regression proceeds t o  a solu- 
tion by finding the 0 which minimizes the summed weighted- 
squared errors (y - X/.3)TW(y - Xp).  The extrema1 condition 
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, obtained by differential calculus is XTW(y - w )  = 0, from 
which the solution is quickly obtained. The sensitivity of this 
least squares solution to  outliers is seen by examining the pre- 
dicted observation vector yLS = XP,, = X(XTWX)--lXTWy. 
This equation shows that if all y-values are held fixed except 
for y i ,  then a change in y,. produces a proportional change in 
the least squares fitted value ('yw)i. Thus, a deviant value can 
have an arbitrarily large effect upon least squares estimates. 

l 
I 

~ 

The technique of modifying the error criterion t o  obtain a 
robust location estimator is now applied to  the regression 
problem. The least squares criterion may be written. as 

if xi denotes a row of X and W is a diagonal matrix with non- 
zero elements wi.  Another standard notation is that for the 
residual r,. = yi - x iP .  The particular robust error criteria con- 
sidered here are of the form Zipc(r i ) ,  where 

where each positive value of c defines a candidate error mea- 
sure. As c is chosen t o  be arbitrarily large, the criterion ap- 
proaches the least squares measure; as c approaches 0, the 
absolute value criterion is produced. At a minimizer of 
.Zipc (q), the must satisfy 

This equation reveals that the optimality condition resembles 
something arising from a weighted least squares problem with 
two types of weights: weights of 1 for residuals smaller than c 
and weights of for larger residuals. Unfortunately, the 
proper weighting cannot in general be known before the prob- 
lem is solved, and the equation as it stands is nonlinear in the 
unknowns. As for the constant c, setting c = la yields an esti- 
mator that has good efficiency for independent, identically 
distributed Gaussian errors while providing robustness against 
mild contamination. However, the variance of the errors is 
not always known beforehand, so c may also be another 
unknown parameter t o  be determined. 

One popular technique of solving the extrema1 condition 
equations is called Iteratively Reweighted Least Squares 
(IRLS). This technique is favored because the algorithm 
(1) is easy t o  understand, ( 2 )  is easy t o  implement if a com- 

mon weighted least squares routine is available, (3) works well 
in practice, and (4) has fairly well understood convergence 
properties. For simplicity of exposition. the regression prob- 
lem is now assumed to  have W-' = 6 1 .  Then the IRLS algo- 
rithm works as follows: (1) the regression problem is solved by 
the standard least squares method, and residuals from this 
regression are calculated; ( 2 )  the MAD is used to  estimate u, 
the scale of the residuals; (3) the standard weighted regression 
equations are solved, where weights of  1 are assigned to  resid- 
uals less than a and weights of are used otherwise; and 
(4) steps 2 and 3 are iterated until convergence is achieved. 
While the theoretical convergence properties of  the IRLS algo- 
rithm are not completely known, partial results indicate that 
it may be globally convergent, as is the case in computational 
practice. Furthermore, it often converges at a linear rate t o  a 
minimum of the error criterion. 

111. Application to Automated Outlier 
Detection 

The statistically robust estimation methods previously 
described are now applied to  the automated outlier detection 
problem initially presented. More specifically, the problem is 
that a set of sequential observations {(fi,j2)}y=, are to  be 
screened for deviant y-values. The observations are quantities 
derived from radio metric data such as range and doppler. In 
the particular case to  be studied, the derived data are doppler 
pseudoresiduals generated by the Deep Space Stations while 
tracking the International Cometary Explorer (ICE) space- 
craft. Pseudoresiduals are essentially numerical differences 
between the observed values and the predicted values. 

A. Model Selection 

As in any applied mathematical problem, one assumes, 
either explicitly o r  tacitly, some model for the physical situa- 
tion which is t o  be studied. The two main model assumptions 
for this application are stated in this section. 

Dynamic considerations can be used to  derive analytic 
descriptions of the observations as functions of  time. For a 
single pass of  data of  several hours' length, polynomials may 
be used t o  approximate these functions. From empirical stud- 
ies, it was found that polynomials of degree 2n usually suffice 
to  accurately approximate the mean curve of a set of  data of 
length n hours from a spacecraft in interplanetary cruise. In 
choosing the degree of  the polynomial, it is more desirable to  
underestimate the required degree than t o  overestimate it 
because an overly high order polynomial can fit both good 
data and outliers. While splines and trigonometric series are 
other possible candidates for the function approximation, 
time has not permitted an investigation into their use for this 
application. 
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Extensive experience has shown that the nominal noise 
about the mean curve is well modeled by independent, iden- 
tically distributed Gaussian random variables. Thus. if good 
estimates of the variance of the Gaussian noise are obtained, 
then a 3a rejection rule should falsely remove only about 
1 out of 500 good values. On this basis, an outlier may be 
defined as a value that is deviant by more than 30, where o 
is a robust estimate of the scale of the nominal Gaussian noise. 
From experience, the portion of outliers in a pass is typically 
between 1 and 10 percent, and they may deviate from the 
mean curve by as much as a few orders of magnitude above 
the nominal a. 

B. Algorithm Selection 

The mathematical tools required for automated outlier 
detection have been presented in Section 11. In particular, 
the iteratively reweighted least squares, or IRLS, algorithm 
is used t o  fit a polynomial to  the outlier-contaminated data 
according to  the error criterion pc.  The choice of c = lo  gives 
an estimator with good statistical efficiency for pure Gaus- 
sian errors and resistance t o  approximately 10 percent outlier 
contamination. The MAD is used in the IRLS algorithm to 
estimate the scale. After the IRLS fit is completed, the MAD 
can be used once more on the residuals from the fit to obtain 
a final scale estimate upon which the 30 rejection rule is 
based. 

Figures 1 and 2 illustrate the application of the IRLS algo- 
rithm to a specific problem. The data are 2-way doppler pseu- 
doresiduals from the ICE spacecraft. Figure 1 shows a plot of 
the data along with a standard least squares fourth degree 
polynomial fit t o  the entire data set (recall that this is the 
first step in the IRLS algorithm). Also in the plot are 30  bands 
about the least squares fit calculated by the usual standard 
deviation formula. The two main effects of the outliers on 
these classical estimators are clearly shown in Fig. 1. First, 
the extreme outlier near the end of the time segment pulls 
the least squares polynomial away from the good data. Then 
the outliers and the oversized residuals near the end of the 
segment combine to  inflate the standard deviation estimate. 
Figure 2 shows the final IRLS polynomial fit to  the data 
with robust 3a bands. In this plot, the ordinate has a dif- 
ferent scale and the extreme outlier is marked by an arrow at 
its abscissa. As can be seen, the robust methods give a more 
agreeable estimate of both the mean curve and the spread of 
the nominal noise about the curve. 

C. Model Verification 

If the function estimation and the outlier rejection steps 
are performed correctly, then according to the assumptions 
for the model, the remaining residuals should be distributed 
as Gaussian noise. As is often the case, however, models are 

not always as accurate as they need to  be for the mathematical 
methods to  perform as hoped. Consequently, it is essential 
that measures for verifying model adequacy are included in 
this automatic data screening algorithm. The major assump- 
tions which must be checked are that the polynomial does 
give a good approximation to  the function followed by the 
good data. that the portion of outliers detected is less than 
10 percent, and that the data remaining after the editing are 
Gaussian. 

As a specific case. Fig. 3 shows a plot of 1-way doppler 
pseudoresiduals. an IRLS fifth degree polynomial fit to these 
data, and a robustly determined 3o band. Again. arrows at 
the borders of the plot denote outliers that are out of range. 
This is an example of model underfitting. as the polynomial 
does not follow some distinct features of the data. Conse- 
quently, the basis for the automated outlier detection pi-o- 
gram is undermined. and the user of the algorithms should 
be warned of the unreliability of results obtained in this 
case. 

Underfitting can often be characterized by a tendency for 
strings of data to lie on one side of the polynomial rather than 
being more randomly strewn about the fitted curve. Fortu- 
nately, there exist standard statistical procedures for verify- 
ing the randomness of data based on this idea. A statistical 
test which considers only the signs of the residuals is called 
the runs test. The statistic upon which it is based is the total 
number of runs, denoted by R ,  of both consecutive positive 
signs and consecutive negative signs. The exact theoretical 
mean and variance of R under the hypothesis of  randomness 
are given by 

and 

Var [R  

E [ R ]  = - 2Np + 1  
N t P  

where N is the number 

- - 2NP(2NP - N - P) 

(N + P)2(N t P -1) 

)f negative signs and P is the number of 
positive signs. For data sets of size 50 or more. the random 
variable R standardized by its mean and variance is approxi- 
mately a zero mean unit variance Gaussian random variable; 
thus, the measure of randomness given by R can be calculated 
easily. 

If the retained residuals test negatively for underfitting, 
then an additional chi-square test for Gaussian behavior can 
be applied. In a nutshell, this test is based upon measuring the 
amount of agreement between a histogram of the data and a 
theoretical histogram determined by a "perfect" Gaussian 
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sample. If 7 j i ,  . . . , ik denote the number of  points in each his- 
togram bin and qi. . . .* qk the number of points in a “perfect” 
Gaussian histogram, then the chi-squared test statistic C is 
given by 

Finally, if the polynomial does not seem t o  underfit the 
data and if the data seem to be distributed as Gaussian noise 
about the polynomial, then a simple count of  the percentage 
of outliers should be performed. Since the algorithms are 
geared to  handle data with 10 percent or less outliers. cases 
which contain greater than 10 percent detected outliers should 
be flagged as potential problem sets requiring manual inspection. 

IV. Discussion 
A prime motivation for employing function fitting in the 

outlier detection problem for radio metric data is that this 
seems to  mimic the operation of a human data analyst. As 
stated in the introduction, a data analyst usually bases much 
of outlier screening upon visual inspection of a plot. The 
human eye “smooths” the data while ignoring outliers to  
extract the underlying curve. Function fitting, attempts to  
imitate this process, and robust function fitting in particular 
is required t o  accurately produce the underlying curve. After 
the curve is estimated, the robust 3a rule provides some ana- 
lytical basis for outlier detection comparable to  an analyst’s 
decision t o  remove data separated by a “gap” from the bulk 
of the data spread about the underlying curve. 

Another reason for choosing robust statistical methods is 
that they are fairly easy to  understand at  the conceptual level. 
There are more classical statistical procedures for outlier detec- 
tion in the linear regression framework, but their application 
in this setting is less straightforward. Typically, classical pro- 
cedures require more involved statistical reasoning than do 
robust methods while providing comparable performance; 
hence the choice for robust methods. For  a more detailed 
comparative discussion, the interested reader can consult 
[6],  which is an extensive survey of methodologies (classi- 
cal, Bayesian, and robust) for handling outliers in various 
contexts. 

To think that robust statistical methods were first invented 
in the 1960s is incorrect, since the median and other robust 
statistics were in use long before then. However, it was not 
until the 1960s that a unifying framework was established for 
considerations of robustness. This development prompted 
considerable theoretical and computational investigation into 
the subject. Also, while the emphasis in this article has been 
on robustness against outliers, it should be known that the 
goals of robust statistics include protection against more than 
just outliers. A more complete description of this modern 
statistical methodology can be found in the references. As a 
note of  caution, robust statistical methods are not a new class 
of foolproof methods which will replace classical methods 
based on least squares and maximum likelihood. Instead, they 
constitute another class of methods with its own domain of 
application alongside those of other statistical methods. One 
appropriate domain of application is the outlier detection 
problem of this article. For  this case, robust methods should 
seem not only reasonable but also ideal for the problem. 
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Fig. 1. Fourth degree least squares polynomial and 3 standard 
deviations based on 2-way doppler pseudoresiduals from ICE. 
Extreme outlier at time 141 pulls the polynomial away from 

the variance estimate. Time segment begins at 13:18, February 5, 
1987. 
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Fig. 2. Fourth degree IRLS polynomial and MAD-based 30 for 
2-way doppler data of Fig. 1. Out-of-range extreme outlier at 
time 141 is marked by the arrow at the bottom of the graph. 
Time segment begins at 13:18, February 5, 1987. 
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Fig. 3. Fifth degree IRLS polynomial and MAD-based 3 0  for 
1-way doppler pseudoresiduals from ICE. Out-of-range outliers 
are marked by arrows. Polynomial underfitting is characterized by 
the number of runs of deviations of the same sign from the 
polynomial. Time segment begins at 18:23, February 7, 1987. 
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